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A VARIATIONAL METHOD OF 
FOR A BODY 

SOLVING AN ELASTIC-PLASTIC PROBLEM 
WITH A CIRCULAR HOLE* 

V.I. KERCHMAN and F.M. EELIKHMAN 

An approach based on the theory of variational inequalitiesandageneral- 
ized plastic analogy for the solution of the elastic-plastic problem (EPP) 
concerning the state of stress of a body weakened by a circular hole 
without the assumption regarding total enclosure of the hole by a plastic 
zone is proposed. The Haar-Karman hypothesis or an equivalent assertion 
is not used here. Generalizations are given to the case of a plastic 
inhomogeneous body and for the utilization of an exponential flow 
condition. Examples are considered and a simple method is proposed for 
estimating the plastic zone dimensions. 

It was assumed in the well-known solution given by Galin /l/ of the 
EPP on the biaxial tension of a plane with a circular hole and its 
generalizations /2-5/ that the plastic domain completely encloses the 
hole. The majority of existing solutions have been obtained for the 
stress concentration around a hole in an infinite domain. 

Let us consider the problem of the plane strain of a body Q with smooth outer contour 
L and a circular hole C of radius a (Fig.1). Near the outer boundary the medium under the 
loads acting on the body is in an elastic state. We shall also assume that if the plastic 
zone does not enclose the hole, then all its connected subdomains lie within appropriate 
characteristic triangles such that, as in the case of total enclosure, the stresses in the 
plastically homogeneous zone Dp are described by the relationships (tensile conditions) 

urrp = 2r, In (r/s)), UP& = 2T, [1 fin (r/a)], $0 = 0 (1) 

where r,6 are polar coordinates connected to the centre of the hole and T, is theplasticity 
limit. 

It is convenient to formulate a statically determinable EPP 
in the terminology of the Airy stress function /l-3/: it is 
required to find the function u(z,@ which satisfies the bi- 
harmonic equation in the elastic zone D” 

A'u = 0 (2) 
and the condition 

1 (%- $)" +4(+$)1<4r,* (3) 

I 
and satisfies the following equation in the plastic zone Dp: 

Fig.1 

The conditions 

uL=f(4* 
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are specified on the body boundary. 
The function n (5, Y), together with its derivatives to second order inclusive, is con- 

tinuous on the elastic-plastic boundary I', unknown in advance, and corresponds toacontinuous 
stress field. 

Let ue (x2 Y) be the solution of (2) with the boundary conditions (5). The corresponding 
purely elastic stress field is smooth within the body. 

Assertion. If u (I* Y) is the solution of the EPP (2)-(5), then the function u (5, Y) == 
U - ue minimizes the functional 

J(v)=~~(Au)W 
n 

in the set of allowable functions K: 

Proof. In the case of homogeneous plastic properties of a material, the function u(.z,Y) 
in the plastic zone is identical-with the biharmonic function up(r) corresponding to the 
stress field (1) so that U(x,Y). satisfies (2) in each of the subdomains D” and Dp. 

Let us obtain a variational inequality for U(x,Y). We multiply the biharmonic operator 
of U by the function (u- u), where v(r,Y) is an arbitrary element of the convex set K. We 
integrate this expression in each of the subdomains De and Dp. After applying Green's formula 
and summation of the integrals over both zones the following relationship is obtained: 

AU.A(v-U)dn=-S(v-U)B(l)dl+ (9) 

($0) 

Here 6 is the jump in the normal derivative of the shear stress utl = @ul~na during 
passage from the elastic into tne plastic zone (the normal n is external relative to 04. The 
fact, established in /6/, of discontinuity of the derivative &,,/an almost everywhere on 
the elastic-plastic boundary r is used here. The remaining three derivatives of u (57 Y) 
in the local coordinates (t,n) are continuous in the neighbourhood of I'. 

For all the functions VEK the integral over the boundary of the body X? on the right- 
hand side of (9) vanishes so that it is sufficient to show constancy of the sign of the 
remaining integral over the elastic-plastic boundary r. The positivity of the jump of the 
derivative (10) for the solution of the EPP results from the relationship /6/ (taking the 
condition (Jtl > %I into account) 

Indeed, the maximum shear stress is 7,=7,(4) everywhere in the plastic domain while 
the inequality %n <% is satisfied in adjacent points of the domain De so that 6 (0 B 0. 

Furthermore, to be specific the case of tensile stresses is examined. We will show that 
for an arbitrary function v(z,y) from the set K the inequality 

u (z, Y) < CJ (I, y) = up (7) - ue (r, e) = F (r, 6) t12) 

is satisfied in this case in the whole plastic zone up to the boundary I'. 
Indeed, the inequality (8) that yields the set K can be rewritten in a polar coordinate 

system in the form of the relationships 

Abe - zrr = M[u + uel = 27, - Q, (r,6), fD > 0 
iv = c3a/i3rr - r-Ialar - r~avae 

(13) 



Here %r %3 are the 
where the allowable stress 
case, as does the solution 

The equality 

stress components 
functions satisfy 
of (1). 
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corresponding to the "trial" Airy function u + uc, 
the condition 744 > % in Dp for the tension 

M[lLPl = 27, (14) 

is satisfied for a real stress field in the plastic zone. 
Therefore, the function w = up-u*-- v satisfies the equation with conditions on the 

hole outline 

1Gf [WI = @ (T, 6) 2 0; Iv j,=, = awl& I,=, = 0 (15) 

where @(r,(i) is a certain non-negative function. 
The solution of problem (15) is conveniently analysed in the variables t=lnr+ 6,q.= 

lnr--6 where we obtain after chaning to them 

tru i au 1 au 
a&%)--T~-T-q- = -+lQ,q)= w (E,$> 0 (16) 
u == ada: = au/h = 0 for E + n = 2 Ins 

The solution of this Cauchy problem by the Riemann method in the domain E+q> 2hia 
is represented in the form 

Here the Riemann-Green function v (8, tl; so* %3) is the solution of the Goursat problem 
for the adjoint equation 

VIE;=E. = 91 (n) = exp I(Q - n)!Zl, VI,,, = 'pz (f) = 
exp [(EO - El/21 

Here in the case under consideration 

'pl (rl) > 0, 'Pt (8 > 0, %' (n) < 0, 'PI' (E) <a 

The Riemann function is constructed by successive approximations /7/. Introducing the 
notation 

tilt (E,q} == aviaE, ~9) (5, q) = avfaq 

we rewrite the solution in the form 

V==‘G', -k&V.-Yn-1) 

&=;uls"+ $Wp~ -l$!r], (2) ti')=z@ f *$r[&) -ll+] 

where the subscript indicates the number of the approximation and 

v, = 'p*(E) > 0, I#') = 'p; (&) < 0, w,(I) = 'pi (n)< 0 

The constancy of the signs of terms of the series for the Riemann function and its 
derivatives 

V*-- v*_r>o, WP -?I&<o, w$--wEr,<o 

is proved by induction using iteration formulas /J/. 
Therefore, the Riemann function for the hyperbolic operator M is non-negative. Hence, 

the solution of the Cauchy problem (15) is also non-negative for an arbitrary non-negative 
right side @. Consequently, we have VQ U in the plastic zone Dp. 

Together with the inequality for the jump 6 this yields the non-negativity of the right- 
hand side of (9), i.e., the variational inequality is satisfied 

a(U, u-U)>0 (17) 

The signs of the right-hand sides in (If, (Ill, and (15) change to the_opposite for the 
case of compressive stresses so that a<0 and the trial function is v(z,bf)> U =- F(r.6). 
and the inequality (17) is also satisfied. Since the set K is convex and closed while the 
bilinear form a(v,,v,) is positive-definite inthespace (71, the existence of a uniqueelement 

UEK satisfying inequality (17) for all VFK follows from the theory of variational 
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inequalities /8/ and this EPP solution supplies the minimum of the functional (6) in the set 
K. The sufficiency is proved by a standard method /8/. It should be noted that the 
variational inequality (17) is obtained without any assumptions regarding the equation of 
state of the plastic body (of the type of the Haar-Karman hypothesis, the gises maximum 
principle, etc., which were used in /8, 9/). 

In general, after constructing the solution of problem (6)-(8), it is necessary to 
confirm that the characteristics of the ideal plasticity equations emerging from the hole 
outline intersect the elastic-plastic boundary just once. 

The proof presented for the variational principle is easily extended to the case of 
inhomogeneous plastic properties of the material round the hole when the plasticity limit, as 
in /lo/, depends on the distance to the hole outline 78 = z,(r)* Suppose the following 
additional requirement is satisfied: 

A (Q' + ueeP) = A*&'= 2~" (F) f 6t' (r)/r<o 

Then inequality (17) also holds. Indeed, in this case a non-negative term 

5s (u-C)A%=dS 

DP 

(18) 

is added on the right-hand side of relationship (9). 
On the basis of an interpretation of the exact solution be obtained /l/, Galin proposed 

/ll/ a platelike analogy for the EPP regarding the biaxial tension of a plane with a hole. 
By using the inequalities obtained above, the generalized platelike analogy can be given a 
strict foundation. It follows from the inequality 6>0_ that the elastic-plastic Airy 
function is u(x, y),< up@} in lie in the neighbourhood of the boundary r and we obtain from 
the relationship (15) for the function w = up-u that the inequality u < up (rf will be 
satisfied for domains Q in which the field of plastic characteristics allows of continuation 
ot the outer contour L. Then the solution of the initial problem (2)-(5) can be replaced by 
the solution of the problem of the bending of a plate of planform Q (u is its deflection) 
for the given boundary conditions (5) and the constraint on the deflection 

u (s, !J) g up (4 (19) 

Indeed, the EPP solution u(x,y) in the "contact" zone fip coincides with the "plastic" 
surface u = up(r) and the "reaction" of this surface is directed towards the plate (for 
Aeup<O and taking account of the inequality 620 for the "transverse forces" concen- 
trated along the line I?). In the domain De where' the plate is free of a normal load it lies 
below the surface u = up (r). As in the EPP, the derivatives to second order inclusive are 
continuous on the boundary I‘ (there are no concentrated moments). 

0.1 0.; 

LY 
f.0 f.1 f-2 f 

0 
i.5 .l 

Fig.2 Fig.3 

Since the boundary conditions (5) for non-zero f and f1 do not allow of a suitable 
physical realization it is convenient to change to the problem with zero boundary conditions 
5 = zf - u". We therefore arrive at the problem of the pressure of a stamp with the profile 

F = UP (r) - ue (r, 6) on a doubly-connected plate clamped along the contour &I. The solution 
of this problem satisfies the variational inequality 

where Kl is a convex closed set of functions from (7). 
As usual, the solution of the variational inequality 

the functional a(6'. 6') on K1 

J (U] = inf,, a (&‘, C’) 

(20) can be obtained by minimizing 

The numerical realization of the variational problem (21) is substantially simpler than 



103 

minimization of the functional (6) in the initial set K. It has been shown /12/ that _ the 
solution of problem (21) for AT &0 possesses sufficient smoothness (UEW*~ (Q),lJ~~~(f2)) 
and a domain of no contact (9n the analogy p) is connected for this solution. 

As an illustration of the utilization of the variational approach, the problem is con- 
sidered for a wide ring i<r<6.5 for boundary conditions on the outer circle taken by 
solving the elastic problem about uniaxial tension of a plane with a hole by a load 0,-O, 
ouy = 0.8337,. Its solution was constructed by the local variations method /13/andwascompared 
with the approximate EPP solution fox the tension of a plane with a hole /14/ (the plastic 
zone does not enclose the hole). The problem was solved for a quadrant of the ring with the 
partitianing along the angle 6 with the step ~16% and along the radius with the variable 
step: 0.05 for r52.5 and 0.1 for r>2.5. Results are presented in Fig.2 for the elastic- 
plastic boundary [dash-dotf , while the approximate solution /la/ is shown there by the solid 
line. 

We also note the simple "external" estimate fox the plastic zone which results from the 
platelike analogy. Since the area of contact between the stamp and the plate is contained 
completely in the domain 

the unknown elastic-plastic boundary lies within this domain with the boundary I". On the 
other hand, it is known that an approximate estimate can be given for the plasticity domain 
in terms of satisfying condition (3) for the purely elastic solution 

wherethisestimate is mainly '"internal". Suppose P : (r = R, 19)) and rl : (r = RI @)) are 
curves corresponding to the equality conditions that approximate the elastic-plasticboundaries 
in thess estimate. Then it is natural to take the curve $: (r = [RI(B)+ R,(6)1/2} as the 
appropriate approximation of the elastic-plastic boundary. 

Fig.3 shows the boundary lines rL,Fp,Fa, constructed for the conditions of the Galinproblem 
/I[ regarding the tension in a plane with a hole of unit radius for o,,= '.3%&'a;gi- f.67,. The 
elastic-plastic boundary corresponding to the exact solution is also given there, The dashed 
curves in Fig.2 represent the appropriate approximate curve p constructed according to the 
elastic solution for a plane with a hole. Xt is seen that the approach proposedfordeterming 
the unknown boundary yields good results when the plastic domain is small; the true boundary 
ro here lies everywhere within the "middle" outline T3. 

The EPP is investigated analogously in the case when the exponential flow condition /3/ 

&#4 - s,,)" + 4nr4a = 4k= {I - exp (--a& + (G + ~#~)~(2k)j)~ (22) 

is satisfied in the plastic zone. 
Here k and TV,, are positive constants with the dimensionality of stress. In the case of 

sn infinite medium with a circular hole the problem with the plasticity condition (221 was 
examined in /3/ under the assumption of total enclosure of the hole by the plastic zone. 

Fox a variational approach it is convenient to formulate this problem, like the 
preceding one‘ in terms of the Airy stress function. The inequality 

Mu 2 A%, &=--2k[i-+~++)] 

is satisfied here in the elastic zone for the compression conditions (the operator Misdefined 
in (13)). 

Furthermore, it is assumed that the inequality u~$<u, /3/ holds under compression con- 
ditions in the elastic, as well as in the plastic, zone, Condition (22) which is satisfied 
in the plastic zone Dp has the form Mu =Nu in the notation used. 

Unlike the problem with the classical plasticity condition, let us make the additional 
assumption that the stress tensor components rrr and 7453 found from the solution of the EPP 
on the outer contour L satisfy the condition 

rrt + '44 > %A + a4*A (28 

where #,A, a$4 and the "plastic" stresses (this assumption is satisfied for tbeexact solution 
in /z/1. 

Assertion. The inequality 

rt(I,Y) 2 zQ(z, If) = x" (r) (W 

is satisfied when condition (24) is satisfied everywhere in the elastic zone D’twhereX” is 
the "plastic" Airy function for a body with flow condition (22). 
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Proof. By the definition of the functions XA it satisfies the relationship MxA = Nx" 

in 0. Subtracting the corresponding parts of (23) from both sides of this equality, we obtain 
in the elastic zone 

M(x~-u)<Nx~-Nu (26) 

Let us consider the right side of relationship (26) 

Since the functions X* and u are biharmonic in the domain De /3/, it follows from (24) 
and the condition of agreement of x_A and u on P. up to the second derivatives, that AxA<Au 
in Da. It hence follows that &'x*<~LL in De, and therefore, in conformity with (26), the in- 
equality M(xA- u) < 0 is satisfied in the elastic domain. It has been shown above that in- 
equality (25) follows from this. 

Repeating the discussion elucidated above, we arrive at the equivalence of the EPP under 
consideration with the contact problem on the bending of a plate with planform Q by a stamp 
z=FA = XA (r)- zf(z, y), which reduces, in turn, to the extremal problem (21) on a convex set 
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